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A stably stratified atmosphere supports propagation of internal gravity waves �IGW�. These waves
result in highly anisotropic fluctuations in temperature and wind velocity that are stretched in a
horizontal direction. As a result, IGW can significantly affect propagation of sound waves in
nighttime boundary layers and infrasound waves in the stratosphere. In this paper, a theory of sound
propagation through, and scattering by, IGW is developed. First, 3D spectra of temperature and
wind velocity fluctuations due to IGW, which were recently derived in the literature for the case of
large wave numbers, are generalized to account for small wave numbers. The generalized 3D spectra
are then used to calculate the sound scattering cross section in an atmosphere with IGW. The
dependencies of the obtained scattering cross section on the sound frequency, scattering angle, and
other parameters of the problem are qualitatively different from those for the case of sound
scattering by isotropic turbulence with the von Kármán spectra of temperature and wind velocity
fluctuations. Furthermore, the generalized 3D spectra are used to calculate the mean sound field and
the transverse coherence function of a plane sound wave propagating through IGW. The results
obtained also significantly differ from those for the case of sound propagation through isotropic
turbulence. © 2005 Acoustical Society of America. �DOI: 10.1121/1.2126938�

PACS number�s�: 43.20.Fn, 43.28.Bj, 43.28.Lv �LCS� Pages: 3420–3429
I. INTRODUCTION

A stably stratified atmosphere often occurs in nighttime
boundary layers �NBL� which extend from the ground to
heights of about several hundred meters. Furthermore, the
atmosphere is stably stratified in the stratosphere with the
highest static stability in a range of heights from about
20 to 45 km.

A stably stratified atmosphere supports propagation of
internal gravity waves �IGW�. In NBL these waves can be
trapped in a waveguide within a temperature inversion layer
where the Brunt-Väisälä frequency is maximal. �The Brunt-
Väisälä frequency is a characteristic frequency of IGW.1�
The local maximum of this frequency near the stratopause
�located about 45 km above the ground� can also be a barrier
for IGW. In both cases, significant fluctuations in tempera-
ture T and wind velocity v are observed due to propagation
of IGW.1–4 These fluctuations are highly anisotropic and are
stretched in a horizontal direction. The fluctuations can sig-
nificantly affect sound propagation in NBL and infrasound
propagation in the stratosphere. For example, facsimile
records of sodars clearly show the presence of IGW in NBL
�Refs. 1 and 2�.

Despite the significance of sound propagation through,
and scattering by, IGW, few theoretical studies of this phe-
nomenon have been made. The reason for that is that such

studies require combining results from two research topics:
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�1� 3D spectra of temperature and wind velocity fluctuations
due to IGW in a stably stratified atmosphere; and �2� a gen-
eral theory of sound propagation through, and scattering by,
anisotropic turbulence with both temperature and wind ve-
locity fluctuations. Significant progress in both research top-
ics has been made only recently.

In the first of these research topics, 3D spectra of tem-
perature and wind velocity fluctuations due to IGW were
derived in Ref. 5 for the limiting case of large wave numbers
�in comparison with the inverse outer scale of IGW�. The
spectra are very anisotropic: Their scale in a horizontal di-
rection is much greater than that in a vertical direction. The
1D vertical spectra of temperature and wind velocity fluctua-
tions obtained from these 3D spectra agree with those de-
rived theoretically,6,7 calculated numerically,8,9 and measured
in the stratosphere and troposphere, e.g., Refs. 3 and 10.

In the second research topic, a general theory of sound
propagation through, and scattering by, anisotropic turbu-
lence with temperature and wind velocity fluctuations has
been developed in Refs. 11–14. Given the 3D spectra of T
and v fluctuations, the theory provides formulas for calcula-
tions of the most widely used statistical moments of plane-
and spherical sound waves: the sound scattering cross sec-
tion, the variances and correlation functions of log-amplitude
and phase fluctuations, the mean sound field, and the coher-

ence function of the sound field.
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The main goal of the present paper is to use the results
obtained in these two research topics to develop a theory of
sound propagation through, and scattering by, IGW. First, the
3D spectra of temperature and wind velocity fluctuations ob-
tained in Ref. 5 for the case of large wave numbers are
generalized to account for small wave numbers �of order of
or smaller than the inverse outer scale of IGW�. It is shown
that the generalized 3D spectra have “realistic” 1D vertical
spectra which, for large wave numbers, agree with those
measured experimentally, and are bounded for small wave
numbers.

Then, the generalized 3D spectra of temperature and
wind velocity fluctuations are used to calculate the sound
scattering cross section in the atmosphere with IGW. The
obtained scattering cross section is compared with that due to
sound scattering by isotropic turbulence with the von
Kármán spectra of temperature and wind velocity fluctua-
tions.

Furthermore, line-of-sight sound propagation through
IGW with the 3D generalized spectra is studied. First, the
extinction coefficient of the mean sound field is calculated.
Then, the transverse coherence function of a plane sound
wave is calculated and analyzed. The results obtained are
also compared with those for the von Kármán spectra of
temperature and wind velocity fluctuations.

The paper is organized as follows. In Sec. II, the spectra
of temperature and wind velocity fluctuations due to IGW
and von Kármán spectra of isotropic turbulence are consid-
ered. The sound scattering cross section in the atmosphere
with IGW is calculated and analyzed in Sec. III. In Sec. IV,
we consider line-of-sight sound propagation through IGW
and calculate the mean sound field and the coherence func-
tion of a plane sound wave. The results obtained in the paper
are summarized in Sec. V.

II. SPECTRA OF TEMPERATURE AND VELOCITY
FLUCTUATIONS

A. 3D spectra for large wave numbers

At large wave numbers, the interaction between IGW
modes is strongly nonlinear.5–8 Such interaction transfers en-
ergy from random IGW sources to the modes with larger
vertical and smaller horizontal scales than those in the source
spectrum. This energy transfer is balanced by energy dissi-
pation due to convective or shear instabilities at very large
wave numbers.15 As a result of the nonlinear interaction, 1D
vertical spectra of temperature and horizontal wind velocity
fluctuations have a universal form at large wave numbers
that does not depend on the form of the spectrum for small
wave numbers. These 1D vertical spectra have been studied
extensively theoretically,6,7 numerically,8,9 and
experimentally.16–21

However, when considering sound propagation through
IGW, one needs to know 3D spectra of temperature and wind
velocity fluctuations rather than 1D spectra. Using the
mechanism of nonlinear interaction between IGW modes de-
scribed above, the 3D spectra of temperature and horizontal
wind velocity fluctuations were derived in Ref. 5. The 3D

spectrum of temperature fluctuations is given by:
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�T�K� =
AT0

2N4

g2�K3�5
exp�−

K�
2

4e0K3
2� , �1�

where K= �K1 ,K2 ,K3� is the turbulence wave vector, K�

=�K1
2+K2

2, N is the Brunt-Väisälä frequency, T0 is the ref-
erence value of temperature, and g is the acceleration due
to gravity. The components K1, K2, and K3 of the turbu-
lence wave vector are in the directions of the x-, y-, and z
axes, with the z axis being vertical and the x- and y axes
being in a horizontal plane. Furthermore, e0 is a dimen-
sionless parameter characterizing anisotropy of the spec-
trum. It is defined as a root-mean-square of the horizontal
gradient of horizontal displacements due to IGW.5,6 The
value of e0 depends on the degree of nonlinearity of IGW
and can be in a wide range; however, e0 is always much
less than 1 �see the end of this section for more details�. In
Eq. �1�, the numerical coefficient A is given by

A =
exp�− 1/�32a0��
215�2��3/2e0a0

5/2 . �2�

Here, a0=M2 /8, where M2 is the mean-square vertical gra-
dient of the vertical displacements due to IGW.5 M charac-
terizes the degree of nonlinearity of IGW and varies from 0
to about 0.5. �If M �0.5, IGW are unstable.� Therefore, in
Eq. �2� the value of the parameter a0 is in the range 0
�a0�0.03.

Let �ij�K� be the 3D spectral tensor of wind velocity
fluctuations v= �v1 ,v2 ,v3�= �vx ,vy ,vz�, where i , j=1,2 ,3.
The theory developed in Ref. 5 results in isotropic velocity
fluctuations in a horizontal plane so that �11�K�=�22�K�.
Furthermore, �11�K� has the same dependence on K as does
the temperature spectrum

�11�K� =
AN2

2�K3�5
exp�−

K�
2

4e0K3
2� . �3�

The vertical velocities due to IGW are significantly sup-
pressed in comparison with the horizontal ones. Therefore,
for the purpose of this paper, �i3 and �3i can be ignored in
comparison with �11.

The 3D spectra of temperature and horizontal velocity
fluctuations, Eqs. �1� and �3�, were derived in Ref. 5 assum-
ing that K3�K0 and K3 /K0�K� /K0�. Here, K0 and K0� are
characteristic wave numbers of the spectra in vertical and
horizontal directions, respectively, similar to the inverse
outer scale of turbulence. Let K0=2� /L0, where L0 is a char-
acteristic spatial scale of the spectra. In NBL, L0	300 m,
while in the stratosphere L0	2–4 km. K0� is much less
than K0 so that the ratio �=K0 /K0� is much greater than 1.
Using the measurements of the vertical and horizontal ve-
locities in NBL,22 it can be shown that this ratio is in the
range 3���10. The range of values of � in the stratosphere
is not yet well known. Apparently, it can be as large as �
	10. This value of � in the stratosphere will be assumed in
numerical estimates below.

In Eqs. �1� and �3�, the parameter e0 is of the order of
a0 /�2.5 For the values of a0 and � given above, this param-
eter is in the range 0�e0�3·10−3 in NBL, and in the range

−4
0�e0�3·10 in the stratosphere. Since e0�1, the spectra
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�T and �11, given by Eqs. �1� and �3�, are very anisotropic:
Their scale in a horizontal direction is much greater than that
in the vertical direction.

Using the spectra �T and �11, given by Eqs. �1� and �3�,
the travel time fluctuations of sound propagation in NBL
were calculated and compared with those measured
experimentally.23 The results obtained show good agreement
between theoretical predictions and experimental data. This
can be considered as an indirect experimental verification of
the spectra �1� and �3�. Note that direct measurements of the
3D spectra �T�K� and �11�K� are difficult to obtain; usually,
1D vertical spectra are measured experimentally by using
different techniques, e.g., ground-based radars and
lidars,3,4,17 high-resolution radiosondes,18,20 and measure-
ments of stellar scintillations from space.16 In the next sec-
tion, starting from Eqs. �1� and �3�, we derive 1D vertical
spectra of temperature and wind velocity fluctuations, and
discuss their agreement with experimental data and theoreti-
cal predictions.

B. 1D vertical spectra for large wave numbers

The 1D vertical spectrum Fv�K3� of temperature fluctua-
tions is defined as

Fv�K3� = 

−�

�

dK1

−�

�

�T�K1,K2,K3�dK2. �4�

Using this formula and Eq. �1� for �T, the 1D vertical tem-
perature spectrum can be calculated

Fv�K3� =
4�Be0

K3
3 . �5�

Here, B=AT0
2N4 /g2. Both the K3

−3 dependence and the coef-
ficient 4�Be0 of the 1D vertical temperature spectrum, Eq.
�5�, agree with those measured experimentally in the strato-
sphere and troposphere.3,4,16–19

Using Eq. �3�, it can be shown that the 1D vertical spec-
trum of vx fluctuations is given by Eq. �5� if the constant B is
replaced with B�=AN2 /2. It is shown in Refs. 5, 7, and 9 that
the dependencies of this 1D vertical spectrum on K3 and the
coefficient 4�B�e0 are consistent with experimental data ob-
tained in Refs. 10, 16, 20, and 21

The 1D vertical spectra of temperature and wind veloc-
ity fluctuations considered in this section also agree with
those derived theoretically6,21 and calculated numerically.8,9

C. Generalized 3D spectra

The spectrum �T, given by Eq. �1�, becomes unrealistic
for small values of the vertical component of the turbulence
wave vector, K3. In this source region, �T should be approxi-
mately constant. Therefore, it is worthwhile to generalize the
spectrum �1� to account for small values of K3.

In this paper, we propose the following generalization of

the 3D temperature spectrum:
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�T�K� =
AT0

2N4

g2�K0
2 + K3

2�5/2 exp�−
K�

2

4e0�K0
2 + K3

2�
� . �6�

If K3�K0, the spectrum �6� coincides with that given by Eq.
�1�. If K3�K0 and K��2�e0K0, the spectrum �6� does not
depend on K and is constant: �T=AT0

2N4 / �g2K0
5�. The sug-

gested generalization of the spectrum �1� is similar to the
generalization of the Kolmogorov spectrum when it is re-
placed by the von Kármán spectrum.11,24 Note that the von
Kármán spectra of temperature and wind velocity fluctua-
tions have been widely used for studies of sound propa-
gation through a turbulent atmosphere, e.g., see Refs. 11
and 25 and references therein.

The variance of temperature fluctuations is determined
as

	T
2 = 


−�

�

dK1

−�

�

dK2

−�

�

�T�K1,K2,K3�dK3. �7�

Substituting the value of �T given by Eq. �6� into Eq. �7� and
calculating the integrals, the constant A can be expressed in
terms of 	T

2

A =
	T

2g2K0
2

8�e0T0
2N4 . �8�

Using this value of A in Eq. �6�, we obtain a desired form of
the generalized 3D spectrum of temperature fluctuations

�T�K� =
K0

2	T
2

8�e0�K0
2 + K3

2�5/2 exp�−
K�

2

4e0�K0
2 + K3

2�
� . �9�

Figure 1 shows �T�K� ,K3�, given by this equation, normal-
ized by �T�0�. In the figure, e0=10−4. It follows from Fig. 1
that �T�K� ,K3� reaches a maximum at K=0 and decreases
along the K� axis �which corresponds to the horizontal
components of the turbulence wave vector� much faster
than along the K3 axis �vertical components of the wave
vector�; i.e., the spectrum is highly anisotropic.

The proposed generalization of the 3D spectrum of hori-
zontal velocity fluctuations, Eq. �3�, is analogous to that of

FIG. 1. The normalized generalized 3D spectrum of temperature fluctua-
tions �T�K� ,K3� /�T�0�. The anisotropy parameter is e0=10−4.
the 3D spectrum of temperature fluctuations
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�11�K� =
AN2

2�K0
2 + K3

2�5/2 exp�−
K�

2

4e0�K0
2 + K3

2�
� . �10�

Thus, the generalized 3D spectra of temperature and wind
velocity fluctuations, Eqs. �9� and �10�, have the same de-
pendence on K as do the corresponding spectra given by
Eqs. �1� and �3�.

The variance 	v
2 of horizontal velocity fluctuations is

given by a formula similar to Eq. �7�: 	v
2 =��11�K�d3K. Sub-

stituting Eq. �10� into this formula and calculating the inte-
gral over K, we express the parameter A in terms of 	v

2:

A =
K0

2	v
2

4�e0N2 . �11�

Using this value of A in Eq. �10�, we obtain a desired form of
the generalized 3D spectrum of horizontal velocity fluctua-
tions

�11�K� =
K0

2	v
2

8�e0�K0
2 + K3

2�5/2 exp�−
K�

2

4e0�K0
2 + K3

2�
� . �12�

Note that the variances of the temperature and horizontal
velocity fluctuations in Eqs. �9� and �12� are related by a
formula that can be obtained by eliminating the parameter A
between Eqs. �8� and �11�

	v
2 =

g2

2N2

	T
2

T0
2 . �13�

The generalized 3D spectra �T�K� and �11�K�, given
by Eqs. �9� and �12�, will be used in Secs. III and IV for
calculations of the statistical moments of a sound field propa-
gating in an atmosphere with IGW.

D. Generalized 1D vertical spectra

In this section, we consider the generalized 1D tempera-
ture and horizontal velocity spectra. For the purpose of this
section, it is more convenient to deal with Eqs. �6� and �10�
for these spectra rather than with equivalent Eqs. �9� and
�12�.

Substituting Eq. �6� into Eq. �4� and calculating the in-
tegrals over K1 and K2, we obtain the generalized 1D vertical
spectrum of temperature fluctuations

Fv�K3� =
4�Be0

�K0
2 + K3

2�3/2 . �14�

For K3�K0, this spectrum coincides with that given by Eq.
�5�. Since the latter spectrum agrees with experimental data,
so does the spectrum �14�. For K3�K0, the spectrum �14� is
approximately constant. This is a more realistic behavior of
the spectrum than an infinite increase of the spectrum �5� for
small K3.

It can be shown that the 1D vertical spectrum of hori-
zontal velocity fluctuations is given by Eq. �14� if the con-
stant B in this equation is replaced with the constant B�. This
spectrum also agrees with experimental data for K3�K0 and

is approximately constant for K3�K0.
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E. von Kármán spectra of temperature and wind
velocity fluctuations

The 3D von Kármán spectrum of isotropic temperature
fluctuations is given by11

�T
vK�K� =

21/35

33/2
3�1/3�
KT

2/3	T,vK
2

�KT
2 + K2�11/6 . �15�

Here, K is the modulus of the turbulence wave number K, 

is the gamma function, 	T,vK

2 is the variance of temperature
fluctuations for the von Kármán spectrum, and KT is a char-
acteristic wave number inversely proportional to the outer
scale of temperature fluctuations.

The 3D von Kármán spectral tensor of isotropic wind
velocity fluctuations is given by11

�ij
vK�K� =

55

22/335/2
3�1/3�
��ij −

KiKj

K2 � K2Kv
2/3	v,vK

2

�Kv
2 + K2�17/6

,

�16�

where �ij is the Kronecker symbol, 	v,vK
2 is the variance of

wind velocity fluctuations, and Kv is a characteristic wave
number inversely proportional to the outer scale of velocity
fluctuations.

Note that the von Kármán spectra �T
vK�K� and �11

vK�K�
have different dependence on K even for K�KT and K
�Kv, while the generalized 3D spectra given by Eqs. �9� and
�12� have the same dependence.

III. SCATTERING OF SOUND BY IGW

The sound scattering cross section, 	, is an important
statistical characteristic of a sound wave propagating in a
medium with random inhomogeneities. In this section, we
calculate 	 for the case of sound scattering by IGW.

A. Sound scattering cross section

For anisotropic turbulence, the sound scattering cross
section is given by11

	 = 2�k4 cos2 ���T�q�

4T0
2 +

n0,in0,j�ij�q�

c0
2 
 . �17�

Here, k is the sound wave number, q=2k�n0−n� is the scat-
tering vector, n0= �n0,1 ,n0,2 ,n0,3� is the unit vector in the
direction of propagation of a sound wave incident on a scat-
tering volume, n is the unit vector in the direction of propa-
gation of a scattered wave, � is the scattering angle between
the vectors n0 and n, and summation is assumed over re-
peated subscripts.

In Eq. �17�, it is worthwhile to express cos � and q in
terms of the spherical coordinates of the unit vectors n0 and
n. Without loss of generality, we assume that the vector n0

lies in the xz plane. Then, n0= �sin 
0 ,0 ,cos 
0�, where 
0 is
the angle between n0 and the vertical z axis; see Fig. 2. In the
spherical coordinates, the unit vector n can be written as n
= �sin 
 cos � , sin 
 sin � , cos 
�. Here, 
 is the angle be-
tween n and the vertical axis, and � is the azimuthal angle
between the projection of n on the horizontal plane and the x

axis �Fig. 2�.
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Using these representations of the unit vectors n0 and n,
the components of the scattering vector q= �q1 ,q2 ,q3� can be
expressed in terms of the spherical coordinates of n0 and n

q1 = 2k�sin 
0 − sin 
 cos ��, q2 = − 2k sin 
 sin � ,

q3 = 2k�cos 
0 − cos 
� . �18�

Furthermore, cos �=n0 ·n can be written as

cos � = sin 
0 sin 
 cos � + cos 
0 cos 
 . �19�

Since n0,2=0 in Eq. �17�, the terms proportional to �i2

and �2j do not contribute to 	. Furthermore, the terms pro-
portional to �i3 and �3j are much less than the term propor-
tional to �11 if the angle 
0 is not too small. If 
0=0, the
terms proportional to �i3 and �3j are small in comparison
with the term proportional to �T for most “reasonable” val-
ues of N.

Thus, in Eq. �17�, the sum n0,in0,j�ij can be approxi-
mated as sin2 
0�11. Furthermore, in this equation, we re-
place �T and �11 by their values given by Eqs. �9� and �12�,
respectively. Finally, using Eq. �18�, we obtain a desired for-
mula for the scattering cross section due to sound scattering
by IGW

	 =

K0
2 cos2 � exp�−

sin2
0 + sin2 
 − 2 sin 
0 sin 
 cos �

4e0�K0
2/�4k2� + �cos 
0 − cos 
�2� �

29e0k�K0
2/�4k2� + �cos 
0 − cos 
�2�5/2

��	T
2

T0
2 + 4 sin2 
0

	v
2

c0
2 
 . �20�

It is worthwhile to compare the obtained value of 	 with
that for the case of sound scattering by isotropic temperature
and wind velocity fluctuations with the von Kármán spectra.
The latter scattering cross section was calculated in Ref. 26

	vK =
b1k1/3KT

2/3 cos2 �

�KT
2/�4k2� + sin2��/2��11/6

��	T,vK
2

T0
2 +

11 sin2 �

6�KT
2/�4k2� + sin2��/2��

	v,vK
2

c0
2 
 . �21�

Hereinafter, for simplicity, KT=Kv. Furthermore, in Eq. �21�
and for some equations below, involved numerical coeffi-
cients are denoted by b with subscripts; in Eq. �21� b1

13/3 3/2 3

FIG. 2. The unit vectors n0 and n in the Cartesian coordinate system.
=5� / �2 3 
 �1/3��=0.0078.
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B. Analysis

Let us compare the sound scattering cross sections 	 and
	vK given by Eqs. �20� and �21�, respectively. In atmospheric
acoustics, the terms K0

2 / �4k2� and KT
2 / �4k2� appearing in

these equations are both small and can be neglected for most
geometries of scattering.

There are several differences between 	 and 	vK. First,
	vK depends only on the scattering angle � between the unit
vectors n0 and n, as must be the case for scattering by iso-
tropic turbulence, while 	 depends not only on � but also on
the orientation of these unit vectors. Second, 	 and 	vK have
different dependencies on the frequency f =kc0 / �2�� of a
sound wave: If K0

2 / �4k2� and KT
2 / �4k2� can be neglected in

Eqs. �20� and �21�, 		1/ f while 	vK	 f1/3. Third, in Eqs.
�20� and �21� the factors in front of the terms 	v

2 /c0
2 and

	v,vK
2 /c0

2 are different. Therefore, relative contributions to 	
and 	vK due to sound scattering by temperature and velocity
fluctuations are different.

Finally, let us compare the dependence of the sound
scattering cross sections 	 and 	vK on the scattering angle �.
In Fig. 3, the solid curve corresponds to the dependence of 	,
normalized by its maximum value, on the difference 
−
0.
When plotting this curve, it was assumed that 	T

2 /T0
2

=	v
2 /c0

2, e0=10−4, 
0=85°, f =3 Hz, and L0=3 km. �The nu-
merical value of L0 corresponds to IGW in the stratosphere;
see Sec. II A.� Furthermore, it was assumed that the azi-
muthal angle �=0. In this case, both n0 and n lie in the xz
plane �see Fig. 2� so that the difference 
−
0 is equal to the
scattering angle �. The dashed curve in Fig. 3 corresponds
to the dependence of 	vK, also normalized by its maximum
value, on the scattering angle �. When plotting the dashed
curve, we assumed that 	T,vK

2 /T0
2=	v,vK

2 /c0
2, KT=K0, and, as

for the solid curve, f =3 Hz.
Figure 3 shows two maxima in the dependence of 	 on


−
0=�. The first maximum occurs at 
=
0 �i.e., at �=0�
and corresponds to forward scattering of a sound wave. The

FIG. 3. The normalized scattering cross section versus the difference 

−
0=�. For this plot, the sound frequency f =3 Hz, the anisotropy param-
eter e0=10−4, the angle 
0=85°, and the scale L0=3 km. The solid and
dashed lines correspond to 	 and 	vK, respectively, normalized by their
maximum values.
appearance of this maximum is well known in theories of
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sound scattering by isotropic turbulence: 	vK reaches its
maximum values for predominantly forward scattering. �In
Fig. 3, a small dip in the dashed curve at �=0 is due to the
fact that sound scattering by isotropic velocity fluctuations is
zero at �=0; this dip would disappear for the case of sound
scattering by only temperature fluctuations.� The second,
much broader maximum in the dependence of 	 on � occurs
at �=�−2
0=10°. This maximum occurs in the direction of
specular reflection of the incident wave from a horizontal
plane. The appearance of this maximum is due to the fact
that random inhomogeneities in temperature and wind veloc-
ity are highly stretched in horizontal planes, effectively pro-
ducing a random layered medium. A plane wave incident on
such a random layered medium is transmitted through, and
reflected from, the medium. The transmitted and reflected
waves correspond to two maxima in the solid curve in Fig. 3.
Note that the dashed curve in this figure does not have a
maximum at �=10°.

The second maximum in the solid curve in Fig. 3 can
explain an interesting phenomenon in infrasound propaga-
tion occurring at heights of about 35–45 km. The infrasound
waves are often partially “reflected” from these heights even
though the effective sound speed in the stratosphere is less
than that near the ground, which prevents such reflection in
geometrical acoustics.27 The second maximum in the depen-
dence of 	 on � occurs at 
=105°, i.e., when the scattered
wave propagates back to the ground. Therefore, Fig. 3 shows
that a significant portion of infrasound energy can be scat-
tered back to the ground from the stratosphere.

C. Backscattering

An important particular case of sound scattering in the
atmosphere is backscattering, which occurs for �=180°. The
backscattering cross section 	��=180° � can be measured by
monostatic sodars.28,29

For the case of backscattering, Eq. �20� can be simplified
by taking into account that n=−n0, 
=�−
0, and �=�. As a
result, we obtain the following formula for the backscattering
cross section due to sound scattering by IGW:

	�180 ° � =

K0
2 exp�−

sin2 
0

4e0�K0
2/�16k2� + cos2 
0��

214e0k�K0
2/�16k2� + cos2 
0�5/2

��	T
2

T0
2 + 4 sin2
0

	v
2

c0
2 
 . �22�

For the von Kármán spectra of temperature and velocity
fluctuations, the backscattering cross section is given by

	vK�180 ° � =
b1k1/3KT

2/3

�1 + KT
2/�4k2��11/6

	T,vK
2

T0
2 . �23�

It follows from Eqs. �22� and �23� that velocity fluctuations
can contribute to 	�180° �; however, they do not contribute
to 	vK�180° �. Furthermore, 	�180° � significantly depends
on 
0 while 	vK�180° � does not.

Figure 4 shows the dependence of 	�180° � �normalized
by its value at 
0=0� on the angle 
0 for different values of

−4 −3
e0: 3�10 —dash-dotted line; 10 —dashed line; and 3
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�10−3—solid line. When plotting Fig. 4, it was assumed that
f =3 kHz and L0=300 m. �The numerical value of L0 corre-
sponds to IGW in NBL, see Sec. II A.� It follows from Fig. 4
that the backscattering cross section decreases rapidly with
the increase of the angle 
0. One would expect such depen-
dence of 	�180° � on 
0 for a layered random medium.

IV. LINE-OF-SIGHT SOUND PROPAGATION THROUGH
IGW

In this section, we will consider line-of-sight sound
propagation in an atmosphere with temperature and wind
velocity fluctuations induced by IGW. We will assume that a
sound wave propagates nearly horizontally in the direction of
the x axis. This is a reasonable assumption for many prob-
lems of atmospheric acoustics, e.g., for near-ground sound
propagation.

A. Effective 3D spectrum

A theory of line-of-sight sound propagation through an-
isotropic, inhomogeneous turbulence with temperature and
wind velocity fluctuations has been recently developed in
Refs. 12–14. Using the Markov approximation and the Rytov
or parabolic equation method, formulas for the variances and
correlation functions of log-amplitude and phase fluctua-
tions, the mean field, and the coherence function of plane
and spherical sound waves were derived. These statistical
moments of a sound field were expressed in terms of the
effective 3D spectral density of random inhomogeneities11–14

�eff�K� =
�T�K�

T0
2 +

4�11�K�
c0

2 . �24�

Using Eqs. �9� and �12�, the effective 3D spectral den-
sity can be calculated for the case of sound propagation

FIG. 4. The normalized backscattering cross section versus the angle 
0.
Dash-dotted line corresponds to e0=3�10−4, dashed line to e0=10−3, and
solid line to e0=3�10−3. For this figure, the sound frequency f =3 kHz and
the scale L0=300 m.
through IGW
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�eff�K� =

K0
2 exp�−

K�
2

4e0�K0
2 + K3

2�

8�e0�K0

2 + K3
2�5/2 �	T

2

T0
2 + 4

	v
2

c0
2 
 . �25�

Using this formula for �eff�K� and equations obtained in
Refs. 12–14, the above-mentioned statistical moments of
plane- and spherical sound waves propagating through
IGW can be readily calculated. In this section, we will
calculate and analyze the mean sound field and the coher-
ence function of a plane sound wave.

B. Mean sound field

The mean field �p� of a sound wave propagating in a
random medium attenuates exponentially11

�p�R�� = p0�R�e−�x. �26�

Here, R= �x ,y ,z�, p0 is the sound field in the absence of
random inhomogeneities, x in the exponent indicates the dis-
tance of sound propagation in a turbulent atmosphere, and �
is the extinction coefficient given by14

� =
�k2

4



−�

�

dK2

−�

�

�eff�0,K2,K3�dK3. �27�

The extinction coefficient � is an important statistical char-
acteristic of a field propagating in a random medium. It in-
dicates the rate at which the coherent part of the field is
transformed into the incoherent one.

Substituting the value of �eff from Eq. �25� into Eq.
�27�, and calculating the integrals over K2 and K3, we obtain
the following formula for the extinction coefficient of the
mean sound field propagating through IGW:

� =
b2k2

�e0K0
�	T

2

T0
2 + 4

	v
2

c0
2 
 , �28�

where b2=�3/2 /32�0.174.
Let us compare Eq. �28� with the extinction coefficient

�vK of the mean sound field propagating in a turbulent atmo-
sphere with the von Kármán spectra of temperature and ve-
locity fluctuations, which can be obtained with the use of
Eqs. �7.110� and �7.111� from Ref. 11

�vK =
b3k2

KT
�	T,vK

2

T0
2 + 4

	v,vK
2

c0
2 
 . �29�

Here, b3=�2 / �22/3�3
3�1/3���0.187. It follows from Eqs.
�28� and �29� that the dependencies of � and �vK on the
parameters of the problem are similar with one exception:
The denominator in Eq. �28� contains a small factor �e0.

The inverse of the extinction coefficient, �−1, is equal to
the distance x of sound propagation in a random medium at
which the mean sound field has decayed by a factor 1 /e. It

follows from Eq. �28� that �−1=�e0c0
2 / �2�b2f2M�, where

M =L0�	T
2 /T0

2+4	v
2 /c0

2� is the outer scale-variance product.
The values of �−1 versus f and M are depicted in Fig. 5�a�.
Similarly, it can be shown from Eq. �29� that �vK

−1

=c0
2 / �2�b3f2MvK�, where MvK=LT�	T,vK

2 /T0
2+4	v,vK

2 /c0
2� is

the outer scale-variance product for the von Kármán spectra.
−1
Here, LT=2� /KT. Figure 5�b� shows �vK as a function of f
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and MvK. Figures 5�a� and 5�b� give us typical values of �−1

and �vK
−1 in the atmosphere. It also follows from these figures

that �−1��vK
−1 provided that M =MvK.

C. Coherence function of a plane sound wave

Let the two points of observation �x ,y1+y ,z1+z� and
�x ,y1 ,z1� be located in a plane perpendicular to the x axis.
Here, y and z are the distances between these two points
along the y- and z axes. The transverse coherence function of
a sound field p is determined by


�x;y,z� = �p�x,y1 + y,z1 + z�p*�x,y1,z1�� . �30�

For the considered case of plane-wave propagation, the
transverse coherence function does not depend on the coor-
dinates y1 and z1; e.g., see Ref. 30.

FIG. 5. �Color online� �a� The inverse of the extinction coefficient, �−1, for
IGW as a function of the frequency f and the outer scale-variance product
M =L0�	T

2 /T0
2+4	v

2 /c0
2�. The values of �−1 are in meters. For this plot, e0

=4�10−4. �b� The inverse of the extinction coefficient, �vK
−1, for the von

Kármán spectra as a function of the frequency f and the outer scale-variance
product MvK=LT�	T,vK

2 /T0
2+4	v,vK

2 /c0
2�. The values of �vK

−1 are in meters.
In Ref. 14, the following formula for 
 was derived:

Ostashev et al.: Sound propagation through internal gravity waves




�x;y,z� = �A0
2�exp�−

�k2x

2



−�

�

dK2

�

−�

�

�1 − ei�yK2+zK3���eff�0,K2,K3��dK3.

�31�

Here, A0 is the amplitude of the plane sound wave at x=0.
After substituting the expression for �eff given by Eq. �25�
into Eq. �31�, some algebra yields a formula for the co-
herence function of a plane sound wave propagating
through IGW


�x;y,z� = �A0
2�exp�− x�F�y,z�� . �32�

Here, the function F characterizes the dependence of the co-
herence function on y and z

F�y,z� =
4

�



−�

� 1 − exp�izK0� − e0y2K0
2�1 + �2��

�1 + �2�2 d� . �33�

Figure 6 shows the normalized coherence function of a plane

sound wave 
̂�x ;y ,z�=
�x ;y ,z� / �A0
2� calculated with the use

of Eqs. �32� and �33�. The calculations were made for x�
=1 and three values of e0. Results for both vertical �y=0�
and horizontal �z=0� separations between two points of ob-
servation are shown. The coherence is observed to decay
much more rapidly with increasing vertical separation than
with increasing horizontal separation. This trend is enhanced
for smaller values of e0.

It is also worthwhile to consider two limiting cases when
analytical formulas for 
�x ;y ,z� can be obtained. In the first
limiting case, the values of y and z are relatively large

zK0 � 1, e0y2K0
2 � 1. �34�

FIG. 6. �Color online� The normalized coherence function 
̂�x ;y ,z� of a
plane sound wave propagating through IGW. The curves show this function
for x=�−1 and for either a vertical separation �y=0� or a horizontal separa-
tion �z=0� between two points of observation. The abscissa is yK0 for hori-
zontal separations or zK0 for vertical separations. Three curves are shown
for horizontal separations, which correspond to e0=10−4, e0=4�10−4, and
e0=10−3.
It can be shown that, in this case, F�2, so that
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�x;y,z� = �A0
2�exp�− 2x�� . �35�

This formula represents the correct asymptotic behavior of
the coherence function for relatively large distances between
the observation points. Indeed, in this case p�x ,y1+y ,z1+z�
and p*�x ,y1 ,z1� do not correlate, so that Eq. �30� takes the
form: 
�x ;y ,z�= �p�x ,y1+y ,z1+z���p*�x ,y1 ,z1��. Replacing
�p� and �p*� in this formula with their values given by Eq.
�26� results in Eq. �35�. Note that, for x�=1, it follows from
Eq. �35� that 
�x ;y ,z� / �A0

2�=1/e2. This result is in agreement
with Fig. 6, where all four curves reach their asymptote 1/e2

for large values of y or z.
Let 
vK�x ;r� be the coherence function of a plane sound

wave for the case of the von Kármán spectra of temperature
and velocity fluctuations, where r=�y2+z2. The value of

vK�x ;r� is given by Eq. �7.112� from Ref. 11. It can be
shown that, if rKT�1 �which is similar to inequalities Eq.
�34��, 
vK is given by Eq. �35� if � is replaced with �vK.

Let us now consider the other limiting case of 
�x ;y ,z�
when the values of y and z are relatively small

zK0 � 1, e0y2K0
2 � 1. �36�

It can be shown that, in this case, F�4e0y2K0
2+z2K0

2. Sub-
stituting this value of F into Eq. �32�, we obtain


�x;y,z� = �A0
2�exp�− x��4e0y2K0

2 + z2K0
2�� . �37�

If rKT�1 �which is similar to Eq. �36��, 
vK�x ;r� can
also be simplified


vK�x;r� = �A0
2�exp�− b4�x�vKKT

5/3r5/3� . �38�

Here, b4=33/2
3�1/3� / �21/35
�2/3����3.73, and the nu-
merical coefficient � is given by

� =
	T,vK

2 /T0
2 + �22/3�	v,vK

2 /c0
2

	T,vK
2 /T0

2 + 4	v,vK
2 /c0

2 . �39�

This coefficient depends on the values of the variances of the
temperature and velocity fluctuations for the von Kármán
spectra, 	T,vK

2 and 	v,vK
2 , and varies in the range 1��

�11/6.
The most noticeable difference between the coherence

functions given by Eqs. �37� and �38� is that 
�x ;y ,z� is a
highly anisotropic function of the coordinates y and z, while

vK�x ;r=�y2+z2� is an isotropic function of these coordi-
nates. Furthermore, in Eq. �37� y and z are both squared,
while in Eq. �38� they have a different power.

D. Coherence radius

The coherence radius is an important characteristic of
the coherence function. It indicates the distance between the
two points of observation at which the coherence function
decreases by a factor of e−1.

Let us consider the limiting case of relatively small val-
ues of y and z when Eq. �36� holds and when the coherence
radius can be determined analytically. In this case, the coher-
ence radius yc along the y axis can be determined by setting

−1
z=0 and equating the exponential term in Eq. �37� to e

hev et al.: Sound propagation through internal gravity waves 3427



yc =
1

2K0
�e0�x

. �40�

Similarly, setting y=0, we obtain the coherence radius zc

along the z axis

zc =
1

K0
��x

. �41�

Comparing Eqs. �40� and �41� reveals that the coherence
radius along the y axis is much greater than that along the z

axis: yc=zc / �2�e0�. Since y and z must satisfy Eq. �36�, the
coherence radii yc and zc exist if �x�1.

Using the formula Eq. �38� for 
vK�x ;r�, it can be shown
that, for rKT�1, the coherence radii yc,vK and zc,vK for the
von Kármán spectra of temperature and wind velocity fluc-
tuations are given by

yc,vK = zc,vK =
1

KT�b4�x�vK�3/5 . �42�

Comparing Eqs. �40�–�42� reveals that, for the case of
sound propagation through IGW, the coherence radii have a
different power dependence on the propagation distance and
extinction coefficient than those for the case of the von
Kármán spectra of temperature and velocity fluctuations.

V. CONCLUSIONS

In this paper, we have developed a theory of sound
propagation through, and scattering by, IGW in a stably
stratified atmosphere.

First, the 3D spectra of temperature and horizontal wind
velocity fluctuations due to IGW recently developed in Ref.
5 for the case of large wave numbers were generalized to
account for small wave numbers. The variances of tempera-
ture and wind velocity fluctuations of the generalized 3D
spectra were calculated.

Then, the generalized 3D spectra of temperature and
wind velocity fluctuations were used to study sound scatter-
ing by IGW. A formula for the sound scattering cross section
	 was derived. It was shown that 	 has different dependen-
cies on the sound frequency, scattering angle, and other pa-
rameters of the problem than does the scattering cross sec-
tion due to sound scattering by temperature and wind
velocity fluctuations with the von Kármán spectra. Further-
more, the scattering cross section 	 has two maxima as a
function of the scattering angle. The first maximum occurs in
the direction of propagation of a sound wave incident on the
scattering volume. The second maximum appears in the di-
rection at which the incident sound wave would be specu-
larly reflected from a horizontal plane. This second maxi-
mum is due to the fact that temperature and wind velocity
fluctuations induced by IGW are highly stretched in a hori-
zontal direction. The second maximum can explain the inter-
esting phenomenon of a partial infrasound “reflection” from
the stratosphere which is observed experimentally.

The generalized 3D spectra of temperature and wind ve-
locity fluctuations were also used to study line-of-sight
sound propagation through an atmosphere with IGW. The

extinction coefficient � of the mean sound field was calcu-
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lated and compared with that for the case of sound propaga-
tion through isotropic turbulence with the von Kármán spec-
tra of temperature and wind velocity fluctuations.
Furthermore, the transverse coherence function 
�x ;y ,z� of a
plane sound wave propagating through an atmosphere with
IGW was calculated. It was shown that 
�x ;y ,z� is an aniso-
tropic function of the transverse coordinates y and z, while
the coherence function for the von Kármán spectra of tem-
perature and wind velocity fluctuations is an isotropic func-
tion of these coordinates.

Finally, note that the variances and correlation functions
of log-amplitude and phase fluctuations of plane and spheri-
cal sound waves, and the transverse coherence function of a
spherical sound wave can be readily calculated using the
general formulas for these statistical moments obtained in
Refs. 12–14 and Eq. �25� for the effective 3D spectral den-
sity, derived in the present paper.
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